Comparison of two superparamagnetic viral-sized iron oxide particles ferumoxides and ferumoxtran-10 with a gadolinium chelate in imaging intracranial tumors.

نویسندگان

  • Peter Varallyay
  • Gary Nesbit
  • Leslie L Muldoon
  • Randal R Nixon
  • Johnny Delashaw
  • James I Cohen
  • Annie Petrillo
  • Doris Rink
  • Edward A Neuwelt
چکیده

BACKGROUND AND PURPOSE Ultrasmall superparamagnetic iron oxide particles result in shortening of T1 and T2 relaxation time constants and can be used as MR contrast agents. We tested four hypotheses by evaluating MR images of intracranial tumors after infusion of two iron oxide agents in comparison with a gadolinium chelate: 1) Ferumoxtran in contrast to ferumoxides can be used as an intravenous MR contrast agent in intracranial tumors; 2) ferumoxtran enhancement, albeit delayed, is similar to gadolinium enhancement; 3) ferumoxtran-enhanced MR images in contrast to gadolinium-enhanced MR images may be compared with histologic specimens showing the cellular location of iron oxide particles; 4) ferumoxtran can serve as a model for viral vector delivery. METHODS In 20 patients, ferumoxides and ferumoxtran were intravenously administered at recommended clinical doses. MR imaging was performed 30 minutes and 4 hours after ferumoxides infusion (n = 3), whereas ferumoxtran-enhanced MR imaging (n = 17) was performed 6 and 24 hours after infusion in the first five patients and 24 hours after infusion in the remaining 12. MR sequences were spin-echo (SE) T1-weighted, fast SE T2- and proton density-weighted, gradient-recalled-echo T2*-weighted, and, in four cases, echo-planar T2-weighted sequences. Representative regions of interest were chosen on pre- and postcontrast images to compare each sequence and signal intensity. RESULTS Despite some degree of gadolinium enhancement in all tumors, no significant T1 or T2 signal intensity changes were seen after ferumoxides administration at either examination time. Fifteen of 17 patients given ferumoxtrans had T1 and/or T2 shortening consistent with iron penetration into tumor. Histologic examination revealed minimal iron staining of the tumor with strong staining at the periphery of the tumors. CONCLUSION 1) Ferumoxtran can be used as an intravenous MR contrast agent in intracranial tumors, mostly malignant tumors. 2) Enhancement with ferumoxtran is comparable to but more variable than that with the gadolinium chelate. 3) Histologic examination showed a distribution of ferumoxtran particles similar to that on MR images, but at histology the cellular uptake was primarily by parenchymal cells at the tumor margin. 4) Ferumoxtran may be used as a model for viral vector delivery in malignant brain tumors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-dose contrast agent for intraoperative MR imaging of intrinsic brain tumors by using ferumoxtran-10.

BACKGROUND AND PURPOSE Intraoperative MR imaging (IMRI) has advantages over conventional framed and frameless techniques. IMRI, however, also has some drawbacks, especially related to interpretation of gadolinium-enhanced intraoperative imaging resulting from surgically induced blood brain barrier injury, vascular changes, and hemorrhage. Ultra-small superparamagnetic iron particles like ferumo...

متن کامل

Iron particles enhance visualization of experimental gliomas with high-resolution sonography.

BACKGROUND AND PURPOSE Intraoperative MR imaging and sonography are used for navigation during neurosurgical procedures. The purpose of this experimental study was to evaluate the potential of high-resolution sonography using superparamagnetic iron oxide (SPIO) particles as a contrast medium to delineate brain tumors and to relate these findings with those of MR imaging. METHODS C6 gliomas we...

متن کامل

In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI.

UNLABELLED Background- It has been suggested that inflammatory cells within vulnerable plaques may be visualized by superparamagnetic iron oxide particle-enhanced MRI. The purpose of this study was to determine the time course for macrophage visualization with in vivo contrast-enhanced MRI using an ultrasmall superparamagnetic iron oxide (USPIO) agent in symptomatic human carotid disease. MET...

متن کامل

Bcl-2-functionalized ultrasmall superparamagnetic iron oxide nanoparticles coated with amphiphilic polymer enhance the labeling efficiency of islets for detection by magnetic resonance imaging

Based on their versatile, biocompatible properties, superparamagnetic iron oxide (SPIO) or ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are utilized for detecting and tracing cells or tumors in vivo. Here, we developed an innoxious and concise synthesis approach for a novel B-cell lymphoma (Bcl)-2 monoclonal antibody-functionalized USPIO nanoparticle coated with an amphiphilic ...

متن کامل

Magnetic Resonance Imaging Modalities with

Abbreviations: BBB: Blood Brain Barrier; Ca: Calcium; CT: Computed Tomography; EM: Electro-Magnetic; EMA: European Medicines Agency; FDA: (U.S.) Food And Drug Administration; Fmri: Functional Magnetic Resonance Imaging; Gd: Gadolinium; GI: Gastro-Intestinal; IV: Intra-Venous; Mn: Manganese; MEMRI: Manganese-Enhanced MRI; Mn-DPDP: Chelated Manganese Nanoparticles; MRA: Magnetic Resonance Angiogr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • AJNR. American journal of neuroradiology

دوره 23 4  شماره 

صفحات  -

تاریخ انتشار 2002